Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Am J Respir Crit Care Med ; 207(9): 1126-1133, 2023 05 01.
Article in English | MEDLINE | ID: covidwho-2327780

ABSTRACT

The COVID-19 crisis was characterized by a massive need for respiratory support, which has unfortunately not been met globally. This situation mimicked those which gave rise to critical care in the past. Since the polio epidemic in the 50's, the technological evolution of respiratory support has enabled health professionals to save the lives of critically-ill patients worldwide every year. However, much of the current innovation work has turned around developing sophisticated, complex, and high-cost standards and approaches whose resilience is still questionable upon facing constrained environments or contexts, as seen in resuscitation work outside intensive care units, during pandemics, or in low-income countries. Ventilatory support is an essential life-saving tool for patients with respiratory distress. It requires an oxygen source combined to a ventilatory assistance device, an adequate monitoring system, and properly trained caregivers to operate it. Each of these elements can be subject to critical constraints, which we can no longer ignore. The innovation process should incorporate them as a prima materia, whilst focusing on the core need of the field using the concept of frugal innovation. Having a universal access to oxygen and respiratory support, irrespective of the context and constraints, necessitates: i) developing cost-effective, energy-efficient, and maintenance-free oxygen generation devices; ii) improving the design of non-invasive respiratory devices (for example, with oxygen saving properties); iii) conceiving fully frugal ventilators and universal monitoring systems; iv) broadening ventilation expertise by developing end-user training programs in ventilator assistance. The frugal innovation approach may give rise to a more resilient and inclusive critical care system. This paradigm shift is essential for the current and future challenges.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , Critical Care , Intensive Care Units , Oxygen
2.
Sci Immunol ; 6(59)2021 05 25.
Article in English | MEDLINE | ID: covidwho-2300367

ABSTRACT

Multiple Inflammatory Syndrome in Children (MIS-C) is a delayed and severe complication of SARS-CoV-2 infection that strikes previously healthy children. As MIS-C combines clinical features of Kawasaki disease and Toxic Shock Syndrome (TSS), we aimed to compare the immunological profile of pediatric patients with these different conditions. We analyzed blood cytokine expression, and the T cell repertoire and phenotype in 36 MIS-C cases, which were compared to 16 KD, 58 TSS, and 42 COVID-19 cases. We observed an increase of serum inflammatory cytokines (IL-6, IL-10, IL-18, TNF-α, IFNγ, CD25s, MCP1, IL-1RA) in MIS-C, TSS and KD, contrasting with low expression of HLA-DR in monocytes. We detected a specific expansion of activated T cells expressing the Vß21.3 T cell receptor ß chain variable region in both CD4 and CD8 subsets in 75% of MIS-C patients and not in any patient with TSS, KD, or acute COVID-19; this correlated with the cytokine storm detected. The T cell repertoire returned to baseline within weeks after MIS-C resolution. Vß21.3+ T cells from MIS-C patients expressed high levels of HLA-DR, CD38 and CX3CR1 but had weak responses to SARS-CoV-2 peptides in vitro. Consistently, the T cell expansion was not associated with specific classical HLA alleles. Thus, our data suggested that MIS-C is characterized by a polyclonal Vß21.3 T cell expansion not directed against SARS-CoV-2 antigenic peptides, which is not seen in KD, TSS and acute COVID-19.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/pathology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/pathology , Adult , Child , Child, Preschool , Cytokines/blood , HLA-DR Antigens/immunology , Humans , Lymphocyte Activation/immunology , SARS-CoV-2/immunology
3.
Crit Care ; 27(1): 9, 2023 01 10.
Article in English | MEDLINE | ID: covidwho-2196397

ABSTRACT

BACKGROUND: Baricitinib has shown efficacy in hospitalized patients with COVID-19, but no placebo-controlled trials have focused specifically on severe/critical COVID, including vaccinated participants. METHODS: Bari-SolidAct is a phase-3, multicentre, randomised, double-blind, placebo-controlled trial, enrolling participants from June 3, 2021 to March 7, 2022, stopped prematurely for external evidence. Patients with severe/critical COVID-19 were randomised to Baricitinib 4 mg once daily or placebo, added to standard of care. The primary endpoint was all-cause mortality within 60 days. Participants were remotely followed to day 90 for safety and patient related outcome measures. RESULTS: Two hundred ninety-nine patients were screened, 284 randomised, and 275 received study drug or placebo and were included in the modified intent-to-treat analyses (139 receiving baricitinib and 136 placebo). Median age was 60 (IQR 49-69) years, 77% were male and 35% had received at least one dose of SARS-CoV2 vaccine. There were 21 deaths at day 60 in each group, 15.1% in the baricitinib group and 15.4% in the placebo group (adjusted absolute difference and 95% CI - 0.1% [- 8·3 to 8·0]). In sensitivity analysis censoring observations after drug discontinuation or rescue therapy (tocilizumab/increased steroid dose), proportions of death were 5.8% versus 8.8% (- 3.2% [- 9.0 to 2.7]), respectively. There were 148 serious adverse events in 46 participants (33.1%) receiving baricitinib and 155 in 51 participants (37.5%) receiving placebo. In subgroup analyses, there was a potential interaction between vaccination status and treatment allocation on 60-day mortality. In a subsequent post hoc analysis there was a significant interaction between vaccination status and treatment allocation on the occurrence of serious adverse events, with more respiratory complications and severe infections in vaccinated participants treated with baricitinib. Vaccinated participants were on average 11 years older, with more comorbidities. CONCLUSION: This clinical trial was prematurely stopped for external evidence and therefore underpowered to conclude on a potential survival benefit of baricitinib in severe/critical COVID-19. We observed a possible safety signal in vaccinated participants, who were older with more comorbidities. Although based on a post-hoc analysis, these findings warrant further investigation in other trials and real-world studies. Trial registration Bari-SolidAct is registered at NCT04891133 (registered May 18, 2021) and EUClinicalTrials.eu ( 2022-500385-99-00 ).


Subject(s)
COVID-19 , Humans , Adult , Male , Middle Aged , Female , SARS-CoV-2 , RNA, Viral , COVID-19 Drug Treatment , Double-Blind Method
4.
Crit Care ; 26(1): 384, 2022 12 13.
Article in English | MEDLINE | ID: covidwho-2162409

ABSTRACT

BACKGROUND: In the context of COVID-19 pandemic, antifungal overuse may have occurred in our hospitals as it has been previously reported for antibacterials. METHODS: To investigate the impact of COVID-19 on antifungal consumption, a multicenter retrospective study including four medical sites and 14 intensive care units (ICU) was performed. Antifungal consumption and incidences of invasive fungal diseases before and during COVID-19 pandemic, for non-COVID-19 patients and COVID-19 patients, were described. RESULTS: An increase in voriconazole consumption was observed in 2020 compared with 2019 for both the whole hospital and the ICU (+ 40.3% and + 63.7%, respectively), whereas the incidence of invasive aspergillosis significantly increased in slightly lower proportions in the ICU (+ 46%). Caspofungin consumption also increased in 2020 compared to 2019 for both the whole hospital and the ICU (+ 34.9% and + 17.0%, respectively) with an increased incidence of invasive candidiasis in the whole hospital and the ICU but in lower proportions (+ 20.0% and + 10.9%, respectively). CONCLUSIONS: We observed an increased consumption of antifungals including voriconazole and caspofungin in our hospital during the COVID-19 pandemic and explained in part by an increased incidence of invasive fungal diseases in COVID-19 patients. These results are of utmost importance as it raises concern about the urgent need for appropriate antifungal stewardship activities to control antifungal consumption.


Subject(s)
COVID-19 , Candidiasis , Humans , Antifungal Agents/therapeutic use , Caspofungin/therapeutic use , Voriconazole/therapeutic use , Retrospective Studies , Pandemics , COVID-19/epidemiology , Candidiasis/drug therapy , Intensive Care Units
5.
Res Diagn Interv Imaging ; 4: 100018, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2132214

ABSTRACT

Objectives: We evaluated the contribution of lung lesion quantification on chest CT using a clinical Artificial Intelligence (AI) software in predicting death and intensive care units (ICU) admission for COVID-19 patients. Methods: For 349 patients with positive COVID-19-PCR test that underwent a chest CT scan at admittance or during hospitalization, we applied the AI for lung and lung lesion segmentation to obtain lesion volume (LV), and LV/Total Lung Volume (TLV) ratio. ROC analysis was used to extract the best CT criterion in predicting death and ICU admission. Two prognostic models using multivariate logistic regressions were constructed to predict each outcome and were compared using AUC values. The first model ("Clinical") was based on patients' characteristics and clinical symptoms only. The second model ("Clinical+LV/TLV") included also the best CT criterion. Results: LV/TLV ratio demonstrated best performance for both outcomes; AUC of 67.8% (95% CI: 59.5 - 76.1) and 81.1% (95% CI: 75.7 - 86.5) respectively. Regarding death prediction, AUC values were 76.2% (95% CI: 69.9 - 82.6) and 79.9% (95%IC: 74.4 - 85.5) for the "Clinical" and the "Clinical+LV/TLV" models respectively, showing significant performance increase (+ 3.7%; p-value<0.001) when adding LV/TLV ratio. Similarly, for ICU admission prediction, AUC values were 74.9% (IC 95%: 69.2 - 80.6) and 84.8% (IC 95%: 80.4 - 89.2) respectively corresponding to significant performance increase (+ 10%: p-value<0.001). Conclusions: Using a clinical AI software to quantify the COVID-19 lung involvement on chest CT, combined with clinical variables, allows better prediction of death and ICU admission.

6.
Trials ; 23(1): 798, 2022 Sep 22.
Article in English | MEDLINE | ID: covidwho-2053951

ABSTRACT

BACKGROUND: Fluid overload is associated with worse outcome in critically ill patients requiring continuous renal replacement therapy (CRRT). Net ultrafiltration (UFNET) allows precise control of the fluid removal but is frequently ceased due to hemodynamic instability episodes. However, approximately 50% of the hemodynamic instability episodes in ICU patients treated with CRRT are not associated with preload dependence (i.e., are not related to a decrease in cardiac preload), suggesting that volume removal is not responsible for these episodes of hemodynamic impairment. The use of advanced hemodynamic monitoring, comprising continuous cardiac output monitoring to repeatedly assess preload dependency, could allow securing UFNET to allow fluid balance control and prevent fluid overload. METHODS: The GO NEUTRAL trial is a multicenter, open-labeled, randomized, controlled, superiority trial with parallel groups and balanced randomization with a 1:1 ratio. The trial will enroll adult patients with acute circulatory failure treated with vasopressors and severe acute kidney injury requiring CRRT who already have been equipped with a continuous cardiac output monitoring device. After informed consent, patients will be randomized into two groups. The control group will receive protocolized fluid removal with an UFNET rate set to 0-25 ml h-1 between inclusion and H72 of inclusion. The intervention group will be treated with an UFNET rate set on the CRRT of at least 100 ml h-1 between inclusion and H72 of inclusion if hemodynamically tolerated based on a protocolized hemodynamic protocol aiming to adjust UFNET based on cardiac output, arterial lactate concentration, and preload dependence assessment by postural maneuvers, performed regularly during nursing rounds, and in case of a hemodynamic instability episode. The primary outcome of the study will be the cumulative fluid balance between inclusion and H72 of inclusion. Randomization will be generated using random block sizes and stratified based on fluid overload status at inclusion. The main outcome will be analyzed in the modified intention-to-treat population, defined as all alive patients at H72 of inclusion, based on their initial allocation group. DISCUSSION: We present in the present protocol all study procedures in regard to the achievement of the GO NEUTRAL trial, to prevent biased analysis of trial outcomes and improve the transparency of the trial result report. Enrollment of patients in the GO NEUTRAL trial has started on June 31, 2021, and is ongoing. TRIAL REGISTRATION: ClinicalTrials.gov NCT04801784. Registered on March 12, 2021, before the start of inclusion.


Subject(s)
COVID-19 , Continuous Renal Replacement Therapy , Hemodynamic Monitoring , Water-Electrolyte Imbalance , Adult , Critical Illness , Humans , Lactates , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , SARS-CoV-2 , Standard of Care , Water-Electrolyte Balance
7.
Intensive Care Med ; 48(8): 995-1008, 2022 08.
Article in English | MEDLINE | ID: covidwho-1995565

ABSTRACT

In patients with the acute respiratory distress syndrome (ARDS), lung imaging is a fundamental tool in the study of the morphological and mechanistic features of the lungs. Chest computed tomography studies led to major advances in the understanding of ARDS physiology. They allowed the in vivo study of the syndrome's lung features in relation with its impact on respiratory physiology and physiology, but also explored the lungs' response to mechanical ventilation, be it alveolar recruitment or ventilator-induced lung injuries. Coupled with positron emission tomography, morphological findings were put in relation with ventilation, perfusion or acute lung inflammation. Lung imaging has always been central in the care of patients with ARDS, with modern point-of-care tools such as electrical impedance tomography or lung ultrasounds guiding clinical reasoning beyond macro-respiratory mechanics. Finally, artificial intelligence and machine learning now assist imaging post-processing software, which allows real-time analysis of quantitative parameters that describe the syndrome's complexity. This narrative review aims to draw a didactic and comprehensive picture of how modern imaging techniques improved our understanding of the syndrome, and have the potential to help the clinician guide ventilatory treatment and refine patient prognostication.


Subject(s)
Respiratory Distress Syndrome , Ventilator-Induced Lung Injury , Artificial Intelligence , Humans , Lung , Respiration, Artificial/methods , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/therapy , Tomography, X-Ray Computed , Ventilator-Induced Lung Injury/diagnostic imaging
8.
Front Med (Lausanne) ; 9: 883950, 2022.
Article in English | MEDLINE | ID: covidwho-1872087

ABSTRACT

Background: The current standard of care during severe acute respiratory distress syndrome (ARDS) is based on low tidal volume (VT) ventilation, at 6 mL/kg of predicted body weight. The time-controlled adaptive ventilation (TCAV) is an alternative strategy, based on specific settings of the airway pressure release ventilation (APRV) mode. Briefly, TCAV reduces lung injury, including: (1) an improvement in alveolar recruitment and homogeneity; (2) reduction in alveolar and alveolar duct micro-strain and stress-risers. TCAV can result in higher intra-thoracic pressures and thus impair hemodynamics resulting from heart-lung interactions. The objective of our study was to compare hemodynamics between TCAV and conventional protective ventilation in a porcine ARDS model. Methods: In 10 pigs (63-73 kg), lung injury was induced by repeated bronchial saline lavages followed by 2 h of injurious ventilation. The animals were then randomized into two groups: (1) Conventional protective ventilation with a VT of 6 mL/kg and PEEP adjusted to a plateau pressure set between 28 and 30 cmH2O; (2) TCAV group with P-high set between 27 and 29 cmH2O, P-low at 0 cmH2O, T-low adjusted to terminate at 75% of the expiratory flow peak, and T-high at 3-4 s, with I:E > 6:1. Results: Both lung elastance and PaO2:FiO2 were consistent with severe ARDS after 2 h of injurious mechanical ventilation. There was no significant difference in systemic arterial blood pressure, pulmonary blood pressure or cardiac output between Conventional protective ventilation and TCAV. Levels of total PEEP were significantly higher in the TCAV group (p < 0.05). Driving pressure and lung elastance were significantly lower in the TCAV group (p < 0.05). Conclusion: No hemodynamic adverse events were observed in the TCAV group compared as to the standard protective ventilation group in this swine ARDS model, and TCAV appeared to be beneficial to the respiratory system.

9.
Am J Respir Crit Care Med ; 206(3): 281-294, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1832818

ABSTRACT

Rationale: Whether patients with coronavirus disease (COVID-19) may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. Objectives: To estimate the effect of ECMO on 90-day mortality versus IMV only. Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO versus no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 < 80 or PaCO2 ⩾ 60 mm Hg). We controlled for confounding using a multivariable Cox model on the basis of predefined variables. Measurements and Main Results: A total of 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability on Day 7 from the onset of eligibility criteria (87% vs. 83%; risk difference, 4%; 95% confidence interval, 0-9%), which decreased during follow-up (survival on Day 90: 63% vs. 65%; risk difference, -2%; 95% confidence interval, -10 to 5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand and when initiated within the first 4 days of IMV and in patients who are profoundly hypoxemic. Conclusions: In an emulated trial on the basis of a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and regions with ECMO capacities specifically organized to handle high demand.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Adult , COVID-19/complications , COVID-19/therapy , Cohort Studies , Humans , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Retrospective Studies , Treatment Outcome
10.
Eur J Anaesthesiol ; 39(5): 427-435, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1707427

ABSTRACT

BACKGROUND: SARS-Cov-2 (COVID-19) has become a major worldwide health concern since its appearance in China at the end of 2019. OBJECTIVE: To evaluate the intrinsic mortality and burden of COVID-19 and seasonal influenza pneumonia in ICUs in the city of Lyon, France. DESIGN: A retrospective study. SETTING: Six ICUs in a single institution in Lyon, France. PATIENTS: Consecutive patients admitted to an ICU with SARS-CoV-2 pneumonia from 27 February to 4 April 2020 (COVID-19 group) and seasonal influenza pneumonia from 1 November 2015 to 30 April 2019 (influenza group). A total of 350 patients were included in the COVID-19 group (18 refused to consent) and 325 in the influenza group (one refused to consent). Diagnosis was confirmed by RT-PCR. Follow-up was completed on 1 April 2021. MAIN OUTCOMES AND MEASURES: Differences in 90-day adjusted-mortality between the COVID-19 and influenza groups were evaluated using a multivariable Cox proportional hazards model. RESULTS: COVID-19 patients were younger, mostly men and had a higher median BMI, and comorbidities, including immunosuppressive condition or respiratory history were less frequent. In univariate analysis, no significant differences were observed between the two groups regarding in-ICU mortality, 30, 60 and 90-day mortality. After Cox modelling adjusted on age, sex, BMI, cancer, sepsis-related organ failure assessment (SOFA) score, simplified acute physiology score SAPS II score, chronic obstructive pulmonary disease and myocardial infarction, the probability of death associated with COVID-19 was significantly higher in comparison to seasonal influenza [hazard ratio 1.57, 95% CI (1.14 to 2.17); P = 0.006]. The clinical course and morbidity profile of both groups was markedly different; COVID-19 patients had less severe illness at admission (SAPS II score, 37 [28 to 48] vs. 48 [39 to 61], P < 0.001 and SOFA score, 4 [2 to 8] vs. 8 [5 to 11], P < 0.001), but the disease was more severe considering ICU length of stay, duration of mechanical ventilation, PEEP level and prone positioning requirement. CONCLUSION: After ICU admission, COVID-19 was associated with an increased risk of death compared with seasonal influenza. Patient characteristics, clinical course and morbidity profile of these diseases is markedly different.


Subject(s)
COVID-19 , Influenza, Human , Pneumonia , Female , Hospital Mortality , Hospitals , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Intensive Care Units , Male , Retrospective Studies , SARS-CoV-2 , Seasons
11.
Med Phys ; 49(1): 420-431, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1544357

ABSTRACT

PURPOSE: Motion-mask segmentation from thoracic computed tomography (CT) images is the process of extracting the region that encompasses lungs and viscera, where large displacements occur during breathing. It has been shown to help image registration between different respiratory phases. This registration step is, for example, useful for radiotherapy planning or calculating local lung ventilation. Knowing the location of motion discontinuity, that is, sliding motion near the pleura, allows a better control of the registration preventing unrealistic estimates. Nevertheless, existing methods for motion-mask segmentation are not robust enough to be used in clinical routine. This article shows that it is feasible to overcome this lack of robustness by using a lightweight deep-learning approach usable on a standard computer, and this even without data augmentation or advanced model design. METHODS: A convolutional neural-network architecture with three 2D U-nets for the three main orientations (sagittal, coronal, axial) was proposed. Predictions generated by the three U-nets were combined by majority voting to provide a single 3D segmentation of the motion mask. The networks were trained on a database of nonsmall cell lung cancer 4D CT images of 43 patients. Training and evaluation were done with a K-fold cross-validation strategy. Evaluation was based on a visual grading by two experts according to the appropriateness of the segmented motion mask for the registration task, and on a comparison with motion masks obtained by a baseline method using level sets. A second database (76 CT images of patients with early-stage COVID-19), unseen during training, was used to assess the generalizability of the trained neural network. RESULTS: The proposed approach outperformed the baseline method in terms of quality and robustness: the success rate increased from 53 % to 79 % without producing any failure. It also achieved a speed-up factor of 60 with GPU, or 17 with CPU. The memory footprint was low: less than 5 GB GPU RAM for training and less than 1 GB GPU RAM for inference. When evaluated on a dataset with images differing by several characteristics (CT device, pathology, and field of view), the proposed method improved the success rate from 53 % to 83 % . CONCLUSION: With 5-s processing time on a mid-range GPU and success rates around 80 % , the proposed approach seems fast and robust enough to be routinely used in clinical practice. The success rate can be further improved by incorporating more diversity in training data via data augmentation and additional annotated images from different scanners and diseases. The code and trained model are publicly available.


Subject(s)
COVID-19 , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Four-Dimensional Computed Tomography , Humans , Image Processing, Computer-Assisted , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , SARS-CoV-2
12.
PLoS One ; 16(11): e0260656, 2021.
Article in English | MEDLINE | ID: covidwho-1533423

ABSTRACT

Therapeutic drug monitoring (TDM) is essential for voriconazole to ensure optimal drug exposure, mainly in critically ill patients for whom voriconazole demonstrated a large variability. The study aimed at describing factors associated with trough voriconazole concentrations in critically ill patients and evaluating the impact of voriconazole concentrations on adverse effects. A 2-year retrospective multicenter cohort study (NCT04502771) was conducted in six intensive care units. Adult patients who had at least one voriconazole TDM were included. Univariable and multivariable linear regression analyses were performed to identify predictors of voriconazole concentrations, and univariable logistic regression analysis, to study the relationship between voriconazole concentrations and adverse effects. During the 2-year study period, 70 patients were included. Optimal trough voriconazole concentrations were reported in 37 patients (52.8%), subtherapeutic in 20 (28.6%), and supratherapeutic in 13 (18.6%). Adverse effects were reported in six (8.6%) patients. SOFA score was identified as a factor associated with an increase in voriconazole concentration (p = 0.025), mainly in the group of patients who had SOFA score ≥ 10. Moreover, an increase in voriconazole concentration was shown to be a risk factor for occurrence of adverse effects (p = 0.011). In that respect, critically ill patients who received voriconazole treatment must benefit from a TDM, particularly if they have a SOFA score ≥ 10. Indeed, identifying patients who are overdosed will help to prevent voriconazole related adverse effects. This result is of utmost importance given the recognized COVID-19-associated pulmonary aspergillosis in ICU patients for whom voriconazole is among the recommended first-line treatment.


Subject(s)
Antifungal Agents/administration & dosage , Critical Illness/therapy , Drug Monitoring/methods , Drug-Related Side Effects and Adverse Reactions/epidemiology , Intensive Care Units/statistics & numerical data , Voriconazole/administration & dosage , Antifungal Agents/adverse effects , Female , France/epidemiology , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors , Voriconazole/adverse effects
13.
Trials ; 22(1): 692, 2021 Oct 11.
Article in English | MEDLINE | ID: covidwho-1463262

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a severe complication of COVID-19 pneumonia, with a mortality rate amounting to 34-50% in moderate and severe ARDS, and is associated with prolonged duration of invasive mechanical ventilation. Such as in non-COVID ARDS, harmful mechanical ventilation settings might be associated with worse outcomes. Reducing the tidal volume down to 4 mL kg-1 of predicted body weight (PBW) to provide ultra-low tidal volume ventilation (ULTV) is an appealing technique to minimize ventilator-inducted lung injury. Furthermore, in the context of a worldwide pandemic, it does not require any additional material and consumables and may be applied in low- to middle-income countries. We hypothesized that ULTV without extracorporeal circulation is a credible option to reduce COVID-19-related ARDS mortality and duration of mechanical ventilation. METHODS: The VT4COVID study is a randomized, multi-centric prospective open-labeled, controlled superiority trial. Adult patients admitted in the intensive care unit with COVID-19-related mild to severe ARDS defined by a PaO2/FiO2 ratio ≤ 150 mmHg under invasive mechanical ventilation for less than 48 h, and consent to participate to the study will be eligible. Patients will be randomized into two balanced parallels groups, at a 1:1 ratio. The control group will be ventilated with protective ventilation settings (tidal volume 6 mL kg-1 PBW), and the intervention group will be ventilated with ULTV (tidal volume 4 mL kg-1 PBW). The primary outcome is a composite score based on 90-day all-cause mortality as a prioritized criterion and the number of ventilator-free days at day 60 after inclusion. The randomization list will be stratified by site of recruitment and generated using random blocks of sizes 4 and 6. Data will be analyzed using intention-to-treat principles. DISCUSSION: The purpose of this manuscript is to provide primary publication of study protocol to prevent selective reporting of outcomes, data-driven analysis, and to increase transparency. Enrollment of patients in the study is ongoing. TRIAL REGISTRATION: ClinicalTrials.gov NCT04349618 . Registered on April 16, 2020.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Adult , Extracorporeal Circulation , Humans , Prospective Studies , Randomized Controlled Trials as Topic , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy , SARS-CoV-2
14.
BMJ Open ; 11(8): e048187, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1376500

ABSTRACT

INTRODUCTION: At the time of the worrying emergence and spread of bacterial resistance, reducing the selection pressure by reducing the exposure to antibiotics in patients with community-acquired pneumonia (CAP) is a public health issue. In this context, the combined use of molecular tests and biomarkers for guiding antibiotics discontinuation is attractive. Therefore, we have designed a trial comparing an integrated approach of diagnosis and treatment of severe CAP to usual care. METHODS AND ANALYSIS: The multiplex PCR and procalcitonin to reduce duration of antibiotics exposure in patients with severe-CAP (MULTI-CAP) trial is a multicentre (n=20), parallel-group, superiority, open-label, randomised trial. Patients are included if adult admitted to intensive care unit for a CAP. Diagnosis of pneumonia is based on clinical criteria and a newly appeared parenchymal infiltrate. Immunocompromised patients are excluded. Subjects are randomised (1:1 ratio) to either the intervention arm (experimental strategy) or the control arm (usual strategy). In the intervention arm, the microbiological diagnosis combines a respiratory multiplex PCR (mPCR) and conventional microbiological investigations. An algorithm of early antibiotic de-escalation or discontinuation is recommended, based on mPCR results and the procalcitonin value. In the control arm, only conventional microbiological investigations are performed and antibiotics de-escalation remains at the clinician's discretion. The primary endpoint is the number of days alive without any antibiotic from the randomisation to day 28. Based on our hypothesis of 2 days gain in the intervention arm, we aim to enrol a total of 450 patients over a 30-month period. ETHICS AND DISSEMINATION: The MULTI-CAP trial is conducted according to the principles of the Declaration of Helsinki, is registered in Clinical Trials and has been approved by the Committee for Protection of Persons and the National French Drug Safety Agency. Written informed consents are obtained from all the patients (or representatives). The results will be disseminated through educational institutions, submitted to peer-reviewed journals for publication and presented at medical congresses. TRIAL REGISTRATION NUMBER: NCT03452826; Pre-results.


Subject(s)
COVID-19 , Pneumonia , Adult , Anti-Bacterial Agents/therapeutic use , Humans , Intensive Care Units , Multiplex Polymerase Chain Reaction , Pneumonia/drug therapy , Procalcitonin
15.
Clin Transl Immunology ; 10(8): e1327, 2021.
Article in English | MEDLINE | ID: covidwho-1359783

ABSTRACT

OBJECTIVES: Impairment of type I interferon (IFN-I) immunity has been reported in critically ill COVID-19 patients. This defect can be explained in a subset of patients by the presence of circulating autoantibodies (auto-Abs) against IFN-I. We set out to improve the detection and the quantification of IFN-I auto-Abs in a cohort of critically ill COVID-19 patients, in order to better evaluate the prevalence of these Abs as the pandemic progresses, and how they correlate with the clinical course of the disease. METHODS: The concentration of anti-IFN-α2 Abs was determined in the serum of 84 critically ill COVID-19 patients who were admitted to ICU in Hospices Civils de Lyon, France, using a commercially available kit (Thermo Fisher, Catalog #BMS217). RESULTS: A total of 21 of 84 (25%) critically ill COVID-19 patients had circulating anti-IFN-α2 Abs above cut-off (> 34 ng mL-1). Among them, 15 of 21 had Abs with neutralising activity against IFN-α2, that is 15 of 84 (18%) critically ill patients. In addition, we noticed an impairment of the IFN-I response in the majority of patients with neutralising anti-IFN-α2 Abs. There was no significant difference in the clinical characteristics or outcome of with or without neutralising anti-IFN-α2 auto-Abs. We detected anti-IFN-α2 auto-Abs in COVID-19 patients' sera throughout their ICU stay. Finally, we also found auto-Abs against multiple subtypes of IFN-I including IFN-ω. CONCLUSIONS: We reported that 18% of critically ill COVID-19 patients were positive for IFN-I auto-Abs, whereas all mild COVID-19 patients were negative, confirming that the presence of these antibodies is associated with a higher risk of developing a critical COVID-19 form.

16.
J Exp Med ; 218(10)2021 10 04.
Article in English | MEDLINE | ID: covidwho-1345702

ABSTRACT

IFN-I and IFN-III immunity in the nasal mucosa is poorly characterized during SARS-CoV-2 infection. We analyze the nasal IFN-I/III signature, namely the expression of ISGF-3-dependent IFN-stimulated genes, in mildly symptomatic COVID-19 patients and show its correlation with serum IFN-α2 levels, which peak at symptom onset and return to baseline from day 10 onward. Moreover, the nasal IFN-I/III signature correlates with the nasopharyngeal viral load and is associated with the presence of infectious viruses. By contrast, we observe low nasal IFN-I/III scores despite high nasal viral loads in a subset of critically ill COVID-19 patients, which correlates with the presence of autoantibodies (auto-Abs) against IFN-I in both blood and nasopharyngeal mucosa. In addition, functional assays in a reconstituted human airway epithelium model of SARS-CoV-2 infection confirm the role of such auto-Abs in abrogating the antiviral effects of IFN-I, but not those of IFN-III. Thus, IFN-I auto-Abs may compromise not only systemic but also local antiviral IFN-I immunity at the early stages of SARS-CoV-2 infection.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , Interferon Type I/immunology , SARS-CoV-2/immunology , Adult , Aged , Animals , Antiviral Agents/immunology , Antiviral Agents/pharmacology , Autoantibodies/blood , COVID-19/blood , COVID-19/virology , Chlorocebus aethiops , Female , Humans , Interferon Type I/pharmacology , Longitudinal Studies , Male , Middle Aged , Nasal Cavity/immunology , Nasal Cavity/virology , Prospective Studies , SARS-CoV-2/physiology , Vero Cells , Viral Load/drug effects , Viral Load/immunology , Virus Replication/drug effects , Virus Replication/immunology
17.
Crit Care ; 25(1): 248, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1317127

ABSTRACT

BACKGROUND: Differences in physiology of ARDS have been described between COVID-19 and non-COVID-19 patients. This study aimed to compare initial values and longitudinal changes in respiratory system compliance (CRS), oxygenation parameters and ventilatory ratio (VR) in patients with COVID-19 and non-COVID-19 pulmonary ARDS matched on oxygenation. METHODS: 135 patients with COVID-19 ARDS from two centers were included in a physiological study; 767 non-COVID-19 ARDS from a clinical trial were used for the purpose of at least 1:2 matching. A propensity-matching was based on age, severity score, oxygenation, positive end-expiratory pressure (PEEP) and pulmonary cause of ARDS and allowed to include 112 COVID-19 and 198 non-COVID pulmonary ARDS. RESULTS: The two groups were similar on initial oxygenation. COVID-19 patients had a higher body mass index, higher CRS at day 1 (median [IQR], 35 [28-44] vs 32 [26-38] ml cmH2O-1, p = 0.037). At day 1, CRS was correlated with oxygenation only in non-COVID-19 patients; 61.6% and 68.2% of COVID-19 and non-COVID-19 pulmonary ARDS were still ventilated at day 7 (p = 0.241). Oxygenation became lower in COVID-19 than in non-COVID-19 patients at days 3 and 7, while CRS became similar. VR was lower at day 1 in COVID-19 than in non-COVID-19 patients but increased from day 1 to 7 only in COVID-19 patients. VR was higher at days 1, 3 and 7 in the COVID-19 patients ventilated using heat and moisture exchangers compared to heated humidifiers. After adjustment on PaO2/FiO2, PEEP and humidification device, CRS and VR were found not different between COVID-19 and non-COVID-19 patients at day 7. Day-28 mortality did not differ between COVID-19 and non-COVID-19 patients (25.9% and 23.7%, respectively, p = 0.666). CONCLUSIONS: For a similar initial oxygenation, COVID-19 ARDS initially differs from classical ARDS by a higher CRS, dissociated from oxygenation. CRS become similar for patients remaining on mechanical ventilation during the first week of evolution, but oxygenation becomes lower in COVID-19 patients. TRIAL REGISTRATION: clinicaltrials.gov NCT04385004.


Subject(s)
COVID-19/therapy , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome/therapy , Aged , Blood Gas Analysis , Body Mass Index , COVID-19/physiopathology , Female , Humans , Intensive Care Units , Male , Middle Aged , Propensity Score , Pulmonary Gas Exchange/physiology , Respiration, Artificial/methods , Respiratory Distress Syndrome/physiopathology , Respiratory Function Tests , Respiratory Mechanics/physiology , SARS-CoV-2
18.
Clin Microbiol Infect ; 27(12): 1826-1837, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1242906

ABSTRACT

OBJECTIVES: We evaluated the clinical, virological and safety outcomes of lopinavir/ritonavir, lopinavir/ritonavir-interferon (IFN)-ß-1a, hydroxychloroquine or remdesivir in comparison to standard of care (control) in coronavirus 2019 disease (COVID-19) inpatients requiring oxygen and/or ventilatory support. METHODS: We conducted a phase III multicentre, open-label, randomized 1:1:1:1:1, adaptive, controlled trial (DisCoVeRy), an add-on to the Solidarity trial (NCT04315948, EudraCT2020-000936-23). The primary outcome was the clinical status at day 15, measured by the WHO seven-point ordinal scale. Secondary outcomes included quantification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in respiratory specimens and pharmacokinetic and safety analyses. We report the results for the lopinavir/ritonavir-containing arms and for the hydroxychloroquine arm, trials of which were stopped prematurely. RESULTS: The intention-to-treat population included 583 participants-lopinavir/ritonavir (n = 145), lopinavir/ritonavir-IFN-ß-1a (n = 145), hydroxychloroquine (n = 145), control (n = 148)-among whom 418 (71.7%) were male, the median age was 63 years (IQR 54-71), and 211 (36.2%) had a severe disease. The day-15 clinical status was not improved with the investigational treatments: lopinavir/ritonavir versus control, adjusted odds ratio (aOR) 0.83, (95% confidence interval (CI) 0.55-1.26, p 0.39), lopinavir/ritonavir-IFN-ß-1a versus control, aOR 0.69 (95%CI 0.45-1.04, p 0.08), and hydroxychloroquine versus control, aOR 0.93 (95%CI 0.62-1.41, p 0.75). No significant effect of investigational treatment was observed on SARS-CoV-2 clearance. Trough plasma concentrations of lopinavir and ritonavir were higher than those expected, while those of hydroxychloroquine were those expected with the dosing regimen. The occurrence of serious adverse events was significantly higher in participants allocated to the lopinavir/ritonavir-containing arms. CONCLUSION: In adults hospitalized for COVID-19, lopinavir/ritonavir, lopinavir/ritonavir-IFN-ß-1a and hydroxychloroquine improved neither the clinical status at day 15 nor SARS-CoV-2 clearance in respiratory tract specimens.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Hydroxychloroquine/therapeutic use , Interferon beta-1a/therapeutic use , Lopinavir/therapeutic use , Ritonavir/therapeutic use , Adult , Antiviral Agents/therapeutic use , Drug Combinations , Female , Humans , Male , Middle Aged , Treatment Outcome
19.
Eur J Immunol ; 51(4): 989-994, 2021 04.
Article in English | MEDLINE | ID: covidwho-1187983

ABSTRACT

Low concentrations of type-I interferon (IFN) in blood seem to be associated with more severe forms of Coronavirus disease 2019 (COVID-19). However, following the type-I interferon response (IR) in early stage disease is a major challenge. We evaluated detection of a molecular interferon signature on a FilmArray® system, which includes PCR assays for four interferon stimulated genes. We analyzed three types of patient populations: (i) children admitted to a pediatric emergency unit for fever and suspected infection, (ii) ICU-admitted patients with severe COVID-19, and (iii) healthcare workers with mild COVID-19. The results were compared to the reference tools, that is, molecular signature assessed with Nanostring® and IFN-α2 quantification by SIMOA® (Single MOlecule Array). A strong correlation was observed between the IR measured by the FilmArray®, Nanostring®, and SIMOA® platforms (r-Spearman 0.996 and 0.838, respectively). The FilmArray® panel could be used in the COVID-19 pandemic to evaluate the IR in 45-min with 2 min hand-on-time at hospitalization and to monitor the IR in future clinical trials.


Subject(s)
COVID-19/blood , Interferon-alpha/blood , Polymerase Chain Reaction/methods , SARS-CoV-2/immunology , Adult , Aged , COVID-19/immunology , Child , Female , Health Personnel , Humans , Interferon Type I/blood , Interferon Type I/genetics , Interferon-alpha/genetics , Male
SELECTION OF CITATIONS
SEARCH DETAIL